
BRIEF NOTES ON AG II: CURVES

SHIZHANG LI

1. Introducing the players

Let us fix a field k. In this section, we’ll introduce examples of schemes (actually, varieties) that are known
as “non-singular projective curves over k”.

Construction 1.1 (Hyperelliptic curves). Throughout this construction, we require that k has characteristic
̸= 2. Let P (x) ∈ k[x] be a polynomial of degree d ≥ 1, such that (P (x), P ′(x)) is the unit ideal. Below we
shall define two affine schemes (which are smooth k-varieties), and glue them over an open, resulting a scheme
called the “hyperelliptic curve associated with P (x)”.

Let U1 := Spec
(
k[x, y]/(y2 − P (x))

)
. Denote the coordinate ring A1 := k[x, y]/(y2 − P (x)). This is our

first affine scheme, simple, easy, yeah?
Now define a new polynomial Q(x) ∈ k[x] by Q(x) := P (1/x) ·x2⌈d/2⌉. Let U2 := Spec

(
k[x, y]/(y2 −Q(x))

)
.

Denote the coordinate ring A2 := k[x, y]/(y2 −Q(x)). This is our second affine scheme. Here’s a fun exercise:

Exercise 1.2. (1) Check that indeed Q(x) ∈ k[x];
(2) Show that (Q(x), Q′(x)) is again the unit ideal.
(3) Show that both U1 and U2 are smooth affine k-varieties.
(4) Show that there is a natural isomorphism of rings A1[1/x] ∼= A2[1/x] with x 7→ 1/x and y 7→ y

x⌈d/2⌉ .

Now we may glue U1 with U2 along opens V1 := Spec(A1[1/x]) ⊂ U1 and V2 := Spec(A2[1/x]) ⊂ U2,
with the glueing isomorphism given by (4) above. The resulting scheme X is called the hyperelliptic curve
associated with P (x).

Here’s a difficult exercise:

Exercise 1.3. (1) Show that X constructed above is a smooth k-variety. For instance, show that the map of
k-algebra: O(U1)⊗k O(U2) → O(V1), where the map on the second factor is via V2 ⊂ U2 together with the
isomorphism O(V1) ∼= O(V2), is surjective. (Make sure you understand why we need to show something like
this.)

(2) What happens if we glue along a smaller affine open V ′
1 ⊂ U1 with V ′

2 ⊂ U2?
(3) What happens if characteristic of k is 2? Specifically, what can you say about the fraction field of(

k[x, y]/(y2 − P (x))
)
/(nilpotents) when char(k) = 2?

In the following exercise, we will compute the dimension of Hodge cohomology of hyperelliptic curves.

Exercise 1.4. Let k be a field of characteristic ̸= 2. Let C be a hyperelliptic curve associated with polynomial
P (x) ∈ k[x].

(1) Compute the dimensions of H0(C,OC) and H1(C,OC). (Hint: the first number is a constant regardless
of P (x), the second number depends solely on the degree of P (x).)

(2) Let A = k[x, y]/(y2 − P (x)), show that there is an element in Ω1
A/k which deserves to be denoted

dx
y = 2·dy

P ′(x) . (Hint: this element should have y× it being dx, and have P ′(x)× it being 2dy. In order to find
this element, recall that (P, P ′) = (1).)

(3) Show that in the setting of (2), we have Ω1
A/k = A · dxy . In other words, the rank 1 locally free A-module

Ω1
A/k is in fact free with generator dx

y . In particular, the element dx
y from (2) is unique.

(4) Now compute the dimensions of H0(C,Ω1
C) and H1(C,Ω1

C). (Hint: the second number is a constant
regardless of P (x), whereas the first number depends solely on the degree of P (x).)

(5) What do you observe?
1
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Alright, now it’s time to discuss general (smooth “complete”) curves instead of the hyperelliptic ones. But
before that, one needs to familiar oneself with some commutative algebra:

Exercise 1.5. (1) Find the notion of “finitely generated field extension” and “transcendental degree” of such
a field extension.

(2) Learn about “valuation rings” and “valuations”, focus on those that have prefix adjective “discrete”.
(3) Find the notion of “taking integral closure of a ring in a field”, focus on the finiteness property this

process has.
(4) Familiarize yourself with the commutative algebra concerning the notion of “Dedekind domain”.

Definition 1.6. Let k be a field, by a function field of curve we mean a finitely generated field extension
K/k of transcendental degree 1.

Warning 1.7. Usually people will add some slightly technical conditions such as k is algebraically closed in
K, or k is itself algebraically closed, or K ⊗k k̄ is still a field. Feel free to assume these conditions, and we
will have to summon them when discussing Riemann–Roch and Serre duality.

Let’s see if you have done the previous exercise.

Exercise 1.8. Let K/k be a function field of curve.
(1) Take an element t ∈ K \ k, what is the possibility of the sub-algebra k[t] ⊂ K? Similarly what is the

possibility of the sub-field inside K generated by k and t?
(2) Convince yourself that very often in the situation of (1), K is a finite extension of the sub-field inside

K generated by k and t. (Hint: this is exactly when t is a transcendental element for the extension K/k.)
(3) Show that any valuation ring squeezed between k and K: k ⊊ Ov ⊂ K must be Noetherian. In fact,

show that such an Ov is either the whole of K (so a field) or a DVR (short-hand for discrete valuation ring).
(4) Let t ∈ K be a transcendental element, show that we have the following equality:

A := integral closure of k[t] in K =
⋂

valuation rings k⊊Ov⊂K containing t

Ov.

(5) In the situation of (4), show that A is a Dedekind domain and is a finite flat k[t]-algebra. Furthermore,
show that the set of valuation rings Ov containing t is in bijection with prime ideals of A, in fact Ov’s
containing t are just local rings at prime ideals of A. (Sanity check: the trivial valuation ring Ov = K
corresponds to the only non-maximal prime ideal (0), and K = Frac(A).)

There is a regular “complete” curve XK functorially associated with a function field of curve K/k, constructed
as follows.

Construction 1.9. Let K/k be a function field of curve. Consider the set of valuation rings {Ov | k ⊊ Ov ⊂
K}, topologize it with an open basis given by subsets of the form D(f1, . . . , fn) := {Ov|fi ∈ Ov} where {fi}
is a finite subset in K. Define a sheaf of rings O whose section on an open U is a function u 7→ f(u) ∈ Ou

such that for any u ∈ U there is a transcendental element t ∈ Ou (now temporarily denote the integral closure
of k[t] by k[t]), and two elements g, h ∈ k[t] such that for all u′ ∈ U ∩D(t, h−1) ⊂ D(t), we have f(u′) = g/h

under the identification of Ou′ = (k[t])p′ . (From the previous exercise, as apparently prime ideals of k[t] is
identified with the set D(t), under which the valuation rings and local rings also identifies.) The ringed space
constructed is denoted by XK .

Exercise 1.10. (1) Is the topology on XK defined above the cofinite topology?
(2) Let t be a transcendental element in K, show that we have an isomorphism of ringed space D(t) ∼=

Spec(k[t]). Since these D(t)’s cover XK , we see that XK is a scheme.
(3) Show that XK is a regular 1-dimensional k-variety.
(4) Show that the local ring at the generic point of XK is exactly K. (So in classical terms, K is the

function field of the curve XK .)

Definition 1.11. By a curve we will simply mean a k-variety XK constructed above from a function field of
curve K.
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We can see some previous examples in this new framework.

Exercise 1.12. (1) Show that P1
k is the curve associated with the function field K = k(t).

(2) Show that the hyperelliptic curve constructed before is the curve associated with the function field
K = k(x)[y]/(y2 − P (x)).

2. Divisors and Line bundles

Let XK be a curve associated with K/k.

Definition 2.1. A divisor on XK is an element in the free abelian group generated by the set of closed points
on XK , said differently, a divisor is simply a formal sum

∑
x∈|Xcl

K | axx where x ranges over all closed points
on XK and coefficients ax ∈ Z are 0 except for a finite number of x’s.

They form the divisor group of XK , Div(XK) := Z[{non-trivial valuations v on K/k}].
A divisor is called effective if all of its coefficients ax ≥ 0. We write D ≥ 0 to express that D is an effective

divisor.
The support of a divisor is the finite set of x’s whose coefficients ax ̸= 0.

One important class of divisors come from elements in K×.

Construction 2.2 (Principal divisors). Given an element f ∈ K×, we define the associated divisor by
Div(f) :=

∑
v v(f) · v. Divisors arising this way are called principal divisors.

Exercise 2.3. (1) Check that this is indeed a finite sum.
(2) Show that we have an abelian group homomorphism: K× → Div(XK), with kernel given by ℓ× where

ℓ is the algebraic closure of k in K.

A very interesting notion in AG is that of “degree”.

Definition 2.4 (Degree of points and divisors). Given a closed point x ∈ XK , define deg(x) := [κ(x) : k].
This extends uniquely to an abelian group homomorphism: Div(XK)

deg−−→ Z, this gives us the notion of degree
of a divisor.

Exercise 2.5 (finite map between curves). Let L/K be an extension of function fields of curves, show that
we have an induced map of associated curves f : XL → YK . Also show that the extension L/K necessarily
has finite degree. Conversely, do you know how to characterize map of k-varieties XL → YK which arises in
this way?

Definition 2.6 (Degree of a finite map between curves). We call a map f : XL → YK a “finite map” if it
arises in the above manner. For a finite map f , its degree is defined by deg(f) := [L : K].

Construction 2.7 (Pullback of divisors). Let f : XL → YK be a finite map of curves corresponding to L/K,
then given any point y ∈ YK corresponds to a discrete valuation v on K, define an effective divisor on XL by:
f∗(y) :=

∑
w|v e(w/v)w, where w’s ranging over all valuations of L extending that of K, and e(w/v) is the

ramification index. (Need to check that the above is a finite sum.) This extends uniquely to a map of divisors
f∗ : Div(YK) → Div(XL).

Exercise 2.8. (1) Show that given a finite map of curves f : XL → YK , then for any divisor D ∈ Div(YK),
we have a formula: deg(f∗D) = deg(f) · deg(D).

(2) Show that any transcendental f ∈ K× defines a finite map f : XK → P1
k, corresponds to the finite field

extension k(t) → K sending t 7→ f . Show that we have a formula f∗(Div(t)) = Div(f).
(3) Show that for any element f ∈ K×, one has that deg(Div(f)) = 0. In particular, we have an abelian

group homomorphism K× → Div0(XK) ⊂ Div(XK), where Div0(XK) denotes the subgroup of degree 0
divisors on XK .

Is there any degree 0 divisor other than the principal ones? In other words, is the homomorphism above
surjective? We’ll discuss this below, but first let us briefly discuss vector bundles.

Exercise 2.9. Let X be a locally Noetherian scheme, and let F be a coherent sheaf on X, show that TFAE:
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• There is an open cover {Ui} of X such that restriction of F to each Ui is of the form Or
Ui

;
• For any point x ∈ X, the stalk is of the form Fx ≃ Or(x)

X,x ;
• For any affine open U = Spec(A) ⊂ X, the A-module F(U) is finitely generated locally free;
• For any affine open U = Spec(A) ⊂ X, the A-module F(U) is finitely generated projective;
• For any affine open U = Spec(A) ⊂ X, the A-module F(U) is finitely generated flat;

Note that in the above, the number r(x) might vary, show that r(x) is locally constant.

Definition 2.10. In the above setting, a coherent sheaf satisfying equivalent conditions above is called “locally
free”. If the function r(x) above is constant r, we call it a vector bundle of rank r. A line bundle is a vector
bundle of rank 1.

Construction 2.11. Many natural constructions in linear algebra can be extended to locally free sheaves.
For instance:

• We may form direct sum ⊕ and tensor product of ⊗ of two locally free sheaves of ranks r and r′,
resulting another vector bundles of rank r + r′ and r · r′.

• Given any locally free sheaf V , we can form its dual, given by V ∨ := Hom(V,OX).
• For any number m, we can similarly form m-th symmetric power, m-th exterior power, m-th divided

power of a locally free sheaf. (Feel free to ignore this item if you don’t know what I mean.)

Exercise 2.12. Make sense of the above. Then show that given two locally free sheaves V1 and V2, one has
the following equality: Hom(V1, V2) = Γ(V ∨

1 ⊗ V2).

Definition 2.13. The set of line bundles on XK , together with tensor product, forms an abelian group with
OXK

being the identity element. This abelian group is called the Picard group of XK , denoted by Pic(XK).

Construction 2.14 (Divisor to Line bundle). Let XK be a curve associated with K/k. Let D =
∑

x ax · x ∈
Div(XK), define a line bundle by O(D)(U) := {f ∈ K| (Div(f) +D) |U ≥ 0} for any non-empty U ⊂ XK .

Exercise 2.15. (1) Check that O(D) is indeed a line bundle by giving it a different description, using
Dedekind factorization.

(2) Show that the construction D 7→ O(D) gives rise to an abelian group homomorphism Div(XK) →
Pic(XK).

(3) Take any f ∈ K× and D ∈ Div(XK), show that “divide by f ” defines an isomorphism O(D)
−/f−−−→
≃

O(D +Div(f)).
(4) Show that when deg(D) < 0, the associated line bundle has only zero global section O(D)(XK) = {0}.
(4’) Show that when deg(D) = 0, then either D is non-principal and the associated line bundle has again

only zero global section; or D is principal, in which case the associated line bundle is just O(D) ≃ OXK
.

Notation 2.16. If L is a line bundle and F is a quasi-coherent sheaf, then we may form another quasi-coherent
sheaf F ⊗ L. When L = O(D), we simply denote F ⊗O(D) by F(D). One may interpret sections of F(D)
as “rational/meromorphic” sections of F which has poles/zeros bounded below by −D”, we will make this
more precise later.

Theorem 2.17. For any function field of curve K/k, we have an exact sequence: 1 → ℓ× → K× →
Div(XK) → Pic(XK) → 1, where ℓ is the algebraic closure of k in K.

The content is to show exactness at Div and Pic, we deal with Div first. We need one more construc-
tion/jargon:

Construction 2.18 (Structure sheaf of effective divisors). Let D =
∑

x ax · x ≥ 0 be an effective divisor on
XK , its “structure sheaf” is defined to be OD :=

∏
x∈supp(D) OX/max

x .

Exercise 2.19. (1) Check that OD is a coherent sheaf, and there is a natural exact sequence of coherent
sheaves:

0 → O(−D) ∼= O(D)∨ → OXK
→ OD → 0.
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Here the map O(−D) → OXK
is the same as an element in O(D)(XK) (by the exercise about duality of

vector bundles), and corresponds to the element 1 ∈ K (since Div(1) +D = D ≥ 0, we may regard 1 as an
element in O(D)(XK)).

(2) Now suppose D is a divisor such that O(D) is the trivial line bundle. Then choose an isomorphism
α : OXK

→ O(D), so the global section 1 on the left hand side will correspond to the right hand side an
element f ∈ K such that Div(f) +D ≥ 0. Now using (1), show that the cokernel of α is precisely ODiv(f)+D.

(3) Therefore the vanishing of cokernel of α is exactly Div(f) +D = 0, in other words, D = Div(f−1) is
principal.

Lastly we need to show that every line bundle on XK is of the form O(D) for some divisor D. What we
need is the following jargon:

Definition 2.20. Let L be a line bundle on XK , a rational trivialization of L is an isomorphism α : K
≃−→ Lη

between the function field and the stalk as K-vector spaces.

Remark 2.21. The difference between K and Lη is that the former is equipped with a canonical base element
1 ∈ K whereas the latter is only a 1-dimensional K-vector space without a canonical choice of base.

Exercise 2.22. (1) Show that rational trivializations always exist.
(2) In fact, show that rational trivializations of L is in bijection with nonzero elements in Lη.
(3) Find the definition of “torsor” and show that the set of rational trivializations of any line bundle L is a

K×-torsor. (Feel free to ignore this item if you don’t want to think about these abstract stuff for now.)

Next we need to know that rational trivializations can be extended to a trivialization on a non-empty open:

Exercise 2.23. Let L be a line bundle on XK with a rational trivialization α : K
≃−→ Lη. Show that there is a

non-empty open U ⊂ XK and an isomorphism αU : OU
≃−→ L|U such that its restriction to the stalk at η is α.

Recall that XK \ U is a finite set of closed points on XK , we want to find an appropriate divisor D

supported on this finite set so that the isomorphism αU extends to an isomorphism αX : O(D)
≃−→ L. To this

end, we first study the question of the necessary and sufficient conditions on D so that αU can be extended to
a morphism at all. The following “local” discussion is the key:

Definition 2.24. Let O be a DVR with fraction field K and uniformizer t. Given a datum of a triple
(M,N,αK) where M and N are rank 1 finite free O-modules and αK : MK

≃−→ NK is an isomorphism. Then
we define ord(N/M) := min{n ∈ Z | t−n · αK(M) ⊃ N as submodules in NK}.

Remark 2.25. In modern language, M and N are called rank 1 lattices in the vector space MK
∼= NK , and

ord(M/N) is measuring the difference between these two lattices. Obviously ord(N/M) ≥ 0 if and only if
M ⊂ N , and when this happens ord(N/M) is the length of the O-module N/M . A warning is that contrary
to what the notation suggests, this quantity ord(N/M) depends crucially on the isomorphism αK , in fact one
might say that this quantity depends only on αK .

Now suppose we have two line bundles Li, a non-empty open U ⊂ XK and an isomorphism αU : (L1)|U →
(L2)U , we may use the above “local” definition to define a “global” divisor:

Definition 2.26. In the above setting, we define D(L2/L1) by:

D(L2/L1) :=
∑
x

ord(L2,x/L1,x) · x.

Here we are using the fact that local ring OX,x is a DVR, and these stalks are equipped with a rational
identification αU |η, so the ord between these two stalks make sense.

Exercise 2.27. (1) Show that the isomorphism αU extends to a morphism L1 ⊗O(D) → L2 if and only if
D ≤ D(L2/L1).

(2) Show that the isomorphism αU extends to an isomorphism L1 ⊗O(D(L2/L1))
≃−→ L2.

(3) In particular, combine what we have done so far and conclude that every line bundle on XK is of the
form O(D) for some divisor D.
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It’s okay to be puzzled by the above at this point, please try to look at the discussion starting at
Definition 3.16 and afterwards, I believe that can clarify things quite a bit.

Definition 2.28. For any line bundle L on XK , define its degree by deg(L) := deg(D) for any D such that
L ≃ O(D).

By the theorem we have just proved, two different such D’s differ by a principal divisor, hence will have
the same degree, therefore the above definition makes sense. Our earlier quest of finding a degree zero but
non-principal divisor now translates to finding a degree zero but nontrivial line bundle. Here’s a somewhat
difficult exercise:

Exercise 2.29. For each degree d ≥ 3, show that there are examples of hyperelliptic curves XK associated
with degree d polynomials P (x) ∈ k[x], such that there are degree zero but nontrivial line bundles on XK .

3. Cohomology of curves

In this section, we will discuss various results concerning cohomology of curves.

3.1. finiteness. For starter, let’s discuss finiteness results, again we fix a field k. Recall that XK ’s are
quasi-compact and covered by Spec of Dedekind domains, so they are Noetherian schemes. As such, we can
talk about coherent sheaves, which are just quasi-coherent sheaves whose restriction to each affine open comes
from finitely generated modules. Here’s the finiteness result that we aim for in this subsection.

Theorem 3.1. Let XK be a curve.
Easy vanishing: For any quasi-coherent sheaf G on XK , we have H≥2(XK ,G) = 0.

Finiteness: Let F be a coherent sheaf on XK , then H0(XK ,F) and H1(XK ,F) are finite dimensional k-vector
spaces.

We shall prove this by studying the case of P1
k carefully. Recall that P1

k := Proj(k[X,Y ]) with |X| = |Y | = 1.
However, here’s an easier way of looking at it.

Exercise 3.2. (1) Show that Proj(k[X,Y ]) is covered by D(X) and D(Y ).
(2) Show that D(X) ∼= Spec(k[Y/X]) whereas D(Y ) ∼= Spec(k[X/Y ]). Show that D(X) ∩ D(Y ) ∼=

Spec(k[Y/X,X/Y ]).
(3) Prove the easy vanishing part of Theorem 3.1 for P1

k.

So we see that P1
k is glued from Spec(k[t]) and Spec(k[t−1]) along their common open Spec(k[t±1), where t

and t−1 are symbols representing Y/X and X/Y . From this description, we can understand (quasi-)coherent
sheaves on it quite explicitly.

Exercise 3.3. (1) Show that the category of quasi-coherent (resp. coherent) sheaves on P1
k is the same as

the category of triples (M,N,α) where M and N are (resp. finitely generated) k[t]- and k[t−1]-modules, and
α : M [1/t]

≃−→ N [t] is an isomorphism of k[t±1]-modules.
(1’) Show that if M is t-torsion free, and N is t−1-torsion free, we may regard the triple as the following

diagram: M ⊂ M [t−1] = N [t] ⊃ N .
(2) Recall that we have constructed certain coherent sheaves O(n) := S̃(n) on Proj(S). Under the

identification of (1) or (1’), what triple does O(n) corresponds to?
(3) Show that if a quasi-coherent sheaf G corresponds to (M,N,α). Then to give a map O(d) → G is the

same as giving a pair of elements (m,n) ∈ M ×N such that tdα(m) = n in M [t−1]
≃−→
α

N [t].
(4) Show that if a quasi-coherent sheaf G corresponds to (M,N,α). Pick any element m ∈ M , then for

d ≫ 0 one can find the n in (3) to define a map O(−d) → G.

Definition 3.4. Let F be a coherent sheaf on a curve XK , its generic rank is defined to be dimK Fη where η
is the generic point of XK whose local ring was showed to be the corresponding function field of curve K.

Exercise 3.5. Convince yourself that the above definition can be generalized to coherent sheaves on integral
locally Noetherian schemes.
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Now we are ready to prove the finiteness part of Theorem 3.1 for P1
k.

Exercise 3.6. Prove the finiteness part of Theorem 3.1 for P1
k by induction on generic rank of the coherent

sheaf F , here’s some steps.
(1) If F is a coherent sheaf on P1

k having generic rank 0, show that H0(P1
k,F) is finite dimensional and

H1(P1
k,F) = 0.

(2) If F is a coherent sheaf on P1
k having generic rank r > 0, show that there exists some d ≫ 0 and an

injection of sheaves O(−d) ↪→ F on P1
k. In particular, we have a short exact sequences of coherent sheaves:

0 → O(−d) → F → Q → 0.

(3) In situation of (2), show that Q has generic rank 1 less than that of F , hence by induction we know
finiteness of cohomology of Q.

(4) Use “long exact sequence” and finiteness of cohomology of O(−d) (please explicitly compute to prove
this) to conclude the finiteness of cohomology of F .

In fact, the case of P1
k implies the general case, by the following trick.

Exercise 3.7. Let XK be the curve associated with K, let t ∈ K be a transcendental element.
(1) Recall that we have identifications of open subschemes in XK : D(t) ∼= Spec(k[t]) and D(t−1) ∼=

Spec(k[t−1]).
(2) Show that D(t) and D(t−1) covers XK with their intersection

D(t) ∩D(t−1) = D(t, t−1) = Spec(k[t][t−1]) = Spec(k[t−1][t]).

(3) Conclude that there is a map π : XK → P1
k which on the above affine pieces are given by finite algebra

map. (Notice that here we said finite instead of merely finite type.)
(4) Given a coherent sheaf F on XK , its restriction to both D(t) and D(t−1) are given by finite modules

M and N over k[t] and k[t−1]. Show that we may regard them as finite modules over k[t] and k[t−1], and
they “glue” to a coherent sheaf on P1

k, denoted by π∗F .
(5) Show that we have natural identifications H∗(XK ,F) = H∗(P1

k, π∗F). This concludes our proof of
Theorem 3.1.

Using this finiteness, we can make the following definition.

Definition 3.8. Let XK be a curve such that k is algebraically closed in K, then its arithmetic genus is
defined to be g := dimk H

1(XK ,O).

Exercise 3.9. (1) When K is the function field of P1
k or a hyperelliptic curve associated with P (x), show

that k is algebraically closed in K.
(2) Compute the arithmetic genus g for those mentioned in (1).

3.2. Riemann–Roch I: an a priori estimate. From now on, we shall assume that k is an algebraically
closed field. As usual, we still denote a general function field of curve by K/k. By a general fact stated in the
previous part, we know that XK are smooth over k: for varieties over perfect fields, regular is equivalent to
smooth.

Now we start investigating cohomology of line bundles on curves, the two most important results are
Riemann–Roch’s theorem and Serre duality. We need the following:

Definition 3.10. Let F be a coherent sheaf on XK , then its Euler characteristic is defined to be χ(XK ,F) :=
dimk H

0(XK ,F) − dimk H
1(XK ,F). We shall simplify the notation by writing only χ(F). People often

denote dimk H
i by hi.

Here’s one simple fact:

Exercise 3.11 (Euler characteristic is additive in short exact sequences). Show that if we have a short exact
sequence of coherent sheaves

0 → F1 → F2 → F3 → 0,

then χ(F2) = χ(F1) + χ(F3).
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The theorem of Riemann–Roch is now very simple:

Theorem 3.12. The following constant χ(L)− deg(L) doesn’t depend on the line bundle L on XK .

Exercise 3.13. Prove the above theorem, using the following idea:
(1) First of all the line bundle must be of the form L ≃ O(D) for some divisor D = D1 −D2 with Di ≥ 0

effective.
(2) Then exploit the following two short exact sequences:

0 → O → O(D1) → O(D1)⊗O OD1
≃ OD1

→ 0;

and
0 → O(D1 −D2) → O(D1) → O(D1)⊗O OD2

≃ OD2
→ 0,

to show that χ(L)− deg(L) = χ(O)− deg(O).

Recall that the arithmetic genus was defined to be h1(O). Let us unfold the above result.

Exercise 3.14. (1) Show that χ(L) = 1− g + deg(L).
(2) Consequently, show that h0(L) ≥ 1− g + deg(L).

Remark 3.15. The above inequality is what Riemann discovered, of course in a slightly different lan-
guage/setting, and Roch (a student of Riemann) found the error term.

To prepare us for what’s gonna happen later, let us understand H1(XK ,L) better.

Definition 3.16. Let L be a line bundle on XK , the (quasi-coherent) sheaf of rational sections j∗Lη of
L is defined as following: for any non-empty U ⊂ XK , we have j∗Lη(U) := Lη (which is nothing but a
1-dimensional K-vector space); and for empty U , the section is just {0}. Restriction maps are either identity
or zero map.

Exercise 3.17. (1) Show that the above defines a sheaf, in fact, show that the above defines a quasi-coherent
sheaf on XK .

(2) Show that there is a natural injection of quasi-coherent sheaves: L ↪→ j∗Lη.
(3) How would you describe the cokernel of the above injection?
(4) Show that for any Dedekind domain A, the quotient Frac(A)/A as an A-module can be alternatively

described as: Frac(A)/A ≃
⊕

(0) ̸=p⊂A Frac(A)/Ap.
(5) Really, how would you describe the cokernel of the above injection?
(6) Show that there is a natural short exact sequence associated with any line bundle L on XK as follows:

0 → L → j∗Lη →
⊕

x∈Xcl
K

Lη/Lx → 0.

Convince yourself that the above is a SES of quasi-coherent sheaves. Here Xcl
K simply denotes the closed

points of XK .

With the above natural short exact sequence, we can better understood the final step of the proof of
surjectivity of Div → Pic: we were simply comparing the two natural SES’s associated with L and O. The
rational isomorphism pre-fixed yields an isomorphism of the middle term, so we may think of both L and O
as subsheaves inside a common quasi-coherent sheaf. Now the question of whether L contains O (both viewed
as subsheaves of this common quasi-coherent sheaf) becomes whether the quotient

Oη = K
α−→
≃

Lη ↠
⊕

x∈Xcl
K

Lη/Lx

factors through the quotient
Oη ↠

⊕
x∈Xcl

K

Oη/Ox.

The fact that the rational isomorphism extends to an isomorphism on an open part shows that for almost all
x ∈ Xcl

K , the lattices Lx and Ox inside Oη = K
α−→
≃

Lη are identified. So we only have to worry about finitely
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many points in the complement of U , then the divisor D = ord(L/O) is exactly designed to match the lattices
appropriately, so that the subsheaves O(D) and L are exactly identified.

Exercise 3.18. Understand the above mumbling. The following might be helpful: let’s say L is a line bundle
on XK , and let’s say D ≥ 0 is an effective divisor. Can you write down some natural diagrams comparing the
natural SES’s for L, L ⊗O(D), and L ⊗O(−D).

Finally, let’s give a better understanding of H1(L).

Exercise 3.19. Let L be a line bundle on XK .
(1) Show that H≥1(j∗Lη) = 0 and that H≥1(

⊕
x∈Xcl

K
Lη/Lx) = 0.

(2) How would you interpret H0(
⊕

x∈Xcl
K
Lη/Lx)?

(3) Describe the above H0, you may find the following phrase helpful: Laurent tails of “rational/meromorphic
sections” of L at finitely many points on XK .

(4) Then interpret H1(L) as:“it’s precisely the failure of finding rational sections of L matching prescribed
Laurent tails of ‘rational/meromorphic sections’ of L.”

Let us explicate the above when L = O(D) for some divisor D.

Notation 3.20. If D is a divisor, we denote T [D] :=
⊕

x∈Xcl
K
K/O(D1)x.

Exercise 3.21. Check that H1(O(D)) ∼= Coker(K → T [D]).

Now we shall introduce two kinds of operators between H1(O(D)) for various D’s.

Construction 3.22. (1) When D1 ≤ D2, then we have a natural map O(D1) → O(D2). This induces the
following commutative diagram between SES’s:

0 // O(D1) //

��

j∗K //

=

��

T [D1]

��

// 0

0 // O(D2) // j∗K // T [D2] // 0.

In particular, the induced map H1(O(D1)) → H1(O(D2)) comes from a map tD1

D2
: T [D1] → T [D2], which

can be interpreted as “truncating prescribed Laurent tails”.
(2) Recall that given f ∈ K×, one gets a natural map O(D)

·f−→ O(D − Div(f)). The induced map
H1(O(D)) → H1(O(D −Div(f))) comes from a map µf : T [D] → T [D −Div(f)], which can be interpreted
as “multiplying prescribed Laurent tails by appropriate tails of f ”.

Exercise 3.23. Understand what tD1

D2
and µf is doing, it can be helpful to think about it one point at a time.

(So in class I should probably talk about the “local/DVR version” of these maps on tails.)

Here is a complicated looking problem: let D be a divisor, and let C be an effective divisor. Consider the
following construction: given any f ∈ H0(O(C)), then we can define a composition

T [D − C]
µf−−→ T [D − C −Div(f)]

t
D−C−Div(f)
D−−−−−−−−→ T [D].

Exercise 3.24. (1) Check that the above composition is well-defined. (The potential issue is that when
defining this t operator, you need an inequality between divisors, and in our situation it’s fine, why?)

(2) Show that f 7→ t ◦ µf defines a linear(!) map

H0(O(C)) → Hom(T [D − C], T [D]).

3.3. Riemann–Roch II: Serre duality. Strictly speaking, Serre duality is an independent statement. The
reason why we put it under the umbrella of Riemann–Roch is really because these two only yield the strongest
power when coupled together. Also, our proof for Serre duality will actually use the a priori estimate coming
from the previous subsection.

First of all, let us state the theorem.
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Theorem 3.25 (Serre duality). For any divisor D on XK , there is a natural bi-linear pairing H0(XK ,Ω1(−D))×
H1(XK ,O(D))

res−−→ k inducing an isomorphism H0(XK ,Ω1(−D))
∼=−→ H1(XK ,O(D))∨. In particular we

have h1(O(D)) = h0(Ω1(−D)).

Recall that Ω1
XK

denotes the sheaf of 1-forms on XK , which is a line bundle on XK . Here is a concrete
way to understand an element in H0(Ω1(D)).

Let x ∈ Xcl
K which is in 1-1 correspondence with discrete valuations vx on K/k, let t be a uniformizer in Ox

(for a DVR, a uniformizer is just an element in the maximal ideal which is not in the square of the maximal
ideal, aka an element with vx(t) = 1). Then Ω1

x ≃ Ox · dt and Ω1
K ≃ K · dt. So an element in H0(Ω1(D)) is

nothing but a rational 1-form ω ∈ Ω1
K

∼= Ω1
K/k such that for every point x ∈ Xcl

K , if we write ω = f · dt, then
f ∈ O(D)x: this exactly means that vx(f) ≥ −ax where ax is the coefficient of x in D.

Residue Theorem. Below let us carefully define the pairing.

Exercise 3.26. (1) Show that there is a decomposition which depends on choice of t: K = (mx)
b
⊕

i<b k · ti.
(2) Show that if we are given an element ω ∈ Ω1

K and write ω = f · dt, then we can uniquely decompose
f =

∑
i<0 ait

i + g with ai ∈ k and g ∈ Ox. In other words, any element ω ∈ Ω1
K/Ω1

x can be uniquely written
as ω =

∑
i<0 ait

i · dt with ai ∈ k.

Here are two difficult facts that we shall summon:

Fact 3.27 (Residue Theorem).
(1) A priori the coefficients of ω above depend on the choice of t. But actually the coefficient a−1 ∈ k is

independent of the choice of t! Therefore we get a k-linear functional

resx = a1 : Ω
1
K/Ω1

x → k.

(2) For any nonzero ω ∈ Ω1
K , it’s easy to see that resx(ω) = 0 except for finitely many points x ∈ Xcl

K .
What’s difficult to see is that the following sum vanishes

∑
x∈Xcl

K
resx(ω) = 0!

Here is something which I don’t know how to do “by hand”:

Exercise 3.28. Prove the fact (1) above.

We will prove the above two statements for curves over complex numbers. In Tate’s paper “Residues of
differentials on curves” readers can find elegant proofs of the above two facts.

Residue Pairing. So here’s the pairing using the Residue theorem above.

Exercise 3.29. (1) Show that we have a natural map T [D]⊗k H0(Ω1(−D)) →
⊕

x∈Xcl
K
Ω1

K/Ω1
x.

Concretely, at a closed point x whose coefficient in D is ax, the first tensor factor is K/(mx)
−ax , and the

second tensor factor gives rise to an element in max
x ⊗Ox Ω1

K . So we may tensor them up and map to an
element in Ω1

K/Ω1
x = (K/Ox)⊗Ox Ω1

K .
(2) Explicate the above “local analysis” around x in terms of a uniformizer t ∈ mx \m2

x.
(3) Show that if a Laurent tail in T [D] comes from a rational function f , then it pairs with any rational

1-form ω ∈ H0(Ω1(−D)) will come from an element in Ω1
K (which of course is none other than fω).

(4) Consequently, show that the following composition:

T [D]⊗k H0(Ω1(−D)) →
⊕

x∈Xcl
K

Ω1
K/Ω1

x

res=
∑

x resx−−−−−−−−→ k

descends to a linear map
H1(XK ,O(D))⊗k H0(Ω1(−D)) → k.

The above is the map appeared in Serre duality.

Exercise 3.30. Specialize to the case where O(D) ≃ Ω1, what concrete statement can we deduce?
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Proof of Serre duality. We look at the induced map H0(XK ,Ω1(−D))
∼=−→ H1(XK ,O(D))∨, which we

will denote by ω 7→ Resω (and interpret the latter symbol as the linear functional spelled out above). We
need to show injectivity and surjectivity. Here are two easy lemmas.

Exercise 3.31. (1) Show that the above map is injective.
(2) Suppose that D2 ≥ D1 and ω ∈ H0(Ω1(−D1)). If Resω vanishes on the kernel of H1(O(D1) →

H1(O(D2)), then ω ∈ H0(Ω1(−D2)) ⊂ H0(Ω1(−D1)) and the descended linear functional on H1(O(D2)) is
again given by Resω.

Here is a key lemma.

Lemma 3.32. Let A be a divisor, and let ϕ1 and ϕ2 be two linear functionals on H1(O(A)). Then there
exists a positive divisor C and f1, f2 ∈ H0(O(C)). Such that the following is a commutative diagram:

T [A− C −Div(f1)]
t // T [A]

ϕ1

!!
T [A− C]

µf1

66

µf2 ((

k.

T [A− C −Div(f2)]
t // T [A]

ϕ2

==

If you prefer an equation, here is one:

ϕ1 ◦ tA−C−Div(f1)
A ◦ µf1 = ϕ2 ◦ tA−C−Div(f2)

A ◦ µf2 ,

as linear functionals on H1(O(A− C)).

Proof. For every positive divisor C, we have a linear map

H0(O(C))⊕H0(O(C)) →
(
H1(O(A− C))

)∨
defined by sending a pair (f1, f2) to

ϕ1 ◦ tA−C−Div(f1)
A ◦ µf1 − ϕ2 ◦ tA−C−Div(f2)

A ◦ µf2 .

(Recall that in a previous exercise, we have checked that t ◦ µf is indeed linear!)
We need to show that there is some positive C such that the map above has nonzero kernel. It suffices

to show that when C has degree large enough, the above source will have dimension larger than the target.
What a great exercise?! □

Exercise 3.33. Finish the above proof. More precisely, using the Riemann–Roch theorem from previous
subsection to show that: when deg(C) = d goes to infinity, the dimension of the source grows at least 2d,
whereas the dimension of the target grows at most d (up to a constant depending on A and the genus of XK).

Now we are ready to prove Serre duality. Here is our last preparation.

Exercise 3.34. (1) If D1 ≤ D2 and ω ∈ H0(Ω1(−D2)) ⊂ H0(Ω1(−D1)), then show that Resω ◦ tD1

D2
= Resω

as linear functionals on H1(O(D1)).
(2) If D is a divisor and ω ∈ H0(Ω1(−D)), and let f ∈ K×. Then show: Resω ◦ µf = Resfω as linear

functionals on H1(O(D +Div(f))).

Finally, let’s prove Serre duality. So we are trying to show that every linear functional ϕ : H1(O(D)) → k
is of the form Resω′ for some ω′ ∈ H0(Ω1(−D)). What if we just take some nonzero ω ∈ Ω1

K and try to
massage it into the desired ω′? Here are the steps that you shall carry out.

Exercise 3.35. (1) With notations as above, show that there exists a divisor A with A ≤ D and ω ∈
H0(Ω1(−A)).
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(2) Let ϕ1 = ϕ ◦ tAD : H1(O(A)) → k, and let ϕ2 = Resω, then apply Lemma 3.32 to see that we are given
ourselves some divisor C and two fi ∈ H0(O(C)) with

ϕ ◦ tAD ◦ tA−C−Div(f1)
A ◦ µf1 = Resω ◦ tA−C−Div(f2)

A ◦ µf2 ,

as linear functional on H1(O(A− C)).
(3) Show that the RHS of the above is just Resf2ω.
(3’) Show that we get an equality

ϕ ◦ tA−C−Div(f1)
D = Res(f2/f1)ω

as linear functional on H1(O(A− C −Div(f1)).
(4) Since the RHS, as a linear functional, vanishes on the kernel of tA−C−Div(f1)

D , we see that (f2/f1)ω ∈
H0(Ω1(−D)), and the above equation just becomes ϕ = Res(f2/f1)ω, we win!

3.4. Quick applications. Let’s harvest. Recall that arithmetic genus was defined as g = h1(O).

Exercise 3.36. Show that dimk H
0(Ω1

XK
) = g and dimk H

1(Ω1
XK

) = 1.

There are authors who call dimk H
0(Ω1

XK
) the analytic genus of XK , so then one would say analytic genus

= arithmetic genus.

Exercise 3.37. (1) Show that deg(Ω1) = 2g − 2.
(2) If D is a divisor of degree > 2g − 2, can you describe h0(O(D)) and h1(O(D))?

If you are into algebraic or differential topology, then you can have a try at the following exercise.

Exercise 3.38. Look up “Euler characteristic” of “closed oriented surfaces” and “Poincaré–Hopf theorem”,
and show that the “topological genus” of a curve over C is given by g as well.

So here we are, topological genus = arithmetic genus = analytic genus! Let’s stop here and have a beer (or
coffee, or tea, or coke, but never, never pepsi).

Email address: lishizhang@amss.ac.cn
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